Intelligence artificielle et emploi
Cas de divers secteurs de l’économie tunisienne
Mots-clés :
Artificial intelligence, Employment, Slope homogeneity test, Swamy modelRésumé
Objet : Le but de cet article est de revoir la relation entre intelligence artificielle (IA) et l’emploi pour onze secteurs de l’économie tunisienne durant la période entre 2010-2022.
Méthodologie : Afin d’étudier la variabilité qui capture l’impact des barrières administratives sur les investissements dans un secteur particulier d’activité, nous appliquons un modèle de régression linéaire de coefficients aléatoires de Swamy, qui tient compte des questions d’hétérogénéité transversale.
Résultats : Les résultats empiriques montrent un effet négatif global de l’IA sur l’emploi. Une analyse sectorielle a mis en évidence un effet positif non significatif pour les industries de l’énergie, de l’agriculture et de l’alimentation.
Originalité / pertinence : Cette étude trouve son originalité dans l’application de la méthode de Swamy pour prendre en compte l’hétérogénéité des secteurs de l’économie tunisienne dans l’adhésion à l’IA.
Téléchargements
Références
Adebayo, OA., Peter, EO., Nwabueze, KN., Joachim, OG., and Emmanuel, CA. (2023). Artificial Intelligence in Developing Countries: Bridging the Gap between Potential and Implementation. Computer Science & IT Research Journal, 4(3), 185-199. https://doi.org/10.51594/csitrj.v4i3.629
Acemoglu, D and Restrepo, P. (2017). Robots and Jobs: Evidence from US Labor Markets, NBER Working Paper No. 22252. Cambridge, MA: National Bureau of Economic Research.
Autor D (2019) Work of the past, work of the future. AEA Pap Proc 109(4):1–32. https://doi.org/10.1257/pandp.20191110
Autor, D. (2003). Outsourcing at Will: The Contribution of Unjust Dismissal Doctrine to the Growth of Employment Outsourcing, Journal of Labor Economics, 21(1), 1-42.
Bessen, J. (2017b): Automation and Jobs: When Technology Boosts Employment, Law and Economics Research Paper No. 17-09. Boston: Boston University School of Law.
Breitung, J. (2005). A parametric approach to the estimation of cointegration vectors in panel data. Econom Rev, 24(2), 151-174.
Carbonero, F., Ernst, E., and Weber, E. (2018). Robots Worldwide: The Impact of Automation on Employment and Trade, ILO Research Department Working Paper No. 36. Geneva: International Labour Office.
Charles, SS., and Nicholas, N. (2024). The impact of artificial intelligence (AI) on employment and economic growth in BRICS: Does the moderating role of governance Matter? Research in Globalization, 8, https://doi.org/10.1016/j.resglo.2024.100213
Chen Z. (2023) Ethics and discrimination in artificial intelligence-enabled recruitment practices. Humanities Soc Sci Commun 10:567. https://doi.org/10.1057/ s41599-023-02079-x
Chiacchio, F., Petropoulos, G. and Pichler, D. (2018). The Impact of Industrial Robots on EU Employment and Wages: A Local Labour Market Approach, Bruegel Working Paper No. 2. Brussels, Bruegel.
De Backer, K., DeStefano, T., Menon., C and Suh, J.R. (2018). Industrial Robotics and the Global Organisation of Production, OECD Science, Technology and Industry Working Paper No. 2018/03. Paris: Organisation for Economic Co-operation and Development.
Duan SX, Deng H, Wibowo S (2023) Exploring the impact of digital work on worklife balance and job performance: a technology affordance perspective. Inf Technol People 36(5):2009–2029. https://doi.org/10.1108/ITP-01-2021-0013
Frey, C B and Osborne, M. (2013). The Future of Employment: How susceptible are jobs to computerisation?, Working Paper, Oxford Martin School (University of Oxford).
Graetz, G., and Michaels, G. (2015). Robots at Work, IZA Discussion Paper No. 8938. Bonn: Institute for the Study of Labor.
Hirst, T. (2014). Does technological innovation increase unemployment?, The World Economic Forum Blog, Agenda.
Jetha A, Bonaccio S, Shamaee A, Banks CG, Bültmann U, Smith PM et al. (2023) Divided in a digital economy: Understanding disability employment inequities stemming from the application of advanced workplace technologies. SSM - Qual Res Health 3:100293. https://doi.org/10.1016/j.ssmqr.2023. 100293
Keynes, J M. (1937). The general theory of employment, Quarterly Journal of Economics, 51(2), 209-223.
Khan, M.S., Umer, H. and Faruqe, F. (2024). Artificial intelligence for low income countries. Humanit Soc Sci Commun 11, 1422 (2024). https://doi.org/10.1057/s41599-024-03947-w
Kirov V, Malamin B (2022) Are translators afraid of artificial intelligence? Societies 12(2):70. https://doi.org/10.3390/soc12020070
Kolade O, Owoseni A (2022) Employment 5.0: The work of the future and the future of work. Technol Soc 71:102086. https://doi.org/10.1016/j.techsoc. 2022.102086
Korinek, A and Stiglitz, J.E. (2017). Artificial Intelligence and Its Implications for Income Distribution and Unemployment, Working Paper 20670. National Bureau Of Economic Research.
Liu Y, Peng J (2023) The impact of “AI unemployment” on contemporary youth and its countermeasures. Youth Exploration 241(1):43–51. https://doi.org/10. 13583/j.cnki.issn1004-3780.2023.01.004
Méda, D. (2016). The Future of Work: The Meaning and Value of Work in Europe, ILO Research Paper No. 18. Geneva: International Labour Office.
Menyah, K., Nazlioglu, S., and Wolde, R.Y. (2014). Financial development, trade openness and economic growth in African countries: new insights from a panel causality approach, Econ Model, 37, 386-394.
Milner, C. and Wright, W.P. (1998), Modeling labor market adjustment to trade liberalization in an industrializing economy, The Economic Journal, 108, 509-528.
Ni B, Obashi A (2021) Robotics technology and firm-level employment adjustment in Japan. Jpn World Econ 57:101054. https://doi.org/10.1016/j.japwor.2021. 101054
Novella R, Rosas-Shady D, Alvarado A (2023) Are we nearly there yet? New technology adoption and labor demand in Peru. Sci Public Policy 50(4):565–578. https://doi.org/10.1093/scipol/scad007
Oschinski A, Wyonch R (2017). Future shock?: the impact of automation on Canada’s labour market.C.D. Howe Institute Commentary working paper
P. A. V. B. Swamy. (1970). Efficient Inference in a Random Coefficient Regression Model. Econometrica, 38(2), 311–323. https://doi.org/10.2307/1913012
Polak P (2021) Welcome to the digital era—the impact of AI on business and society. Society 58:177–178. https://doi.org/10.1007/s12115-021-00588-6
Purdy, M and Daugherty, P. (2017). Why the artificial intelligence is the future of growth, Accenture.
Ramos ME, Garza-Rodríguez J, Gibaja-Romero DE (2022) Automation of employment in the presence of industry 4.0: The case of Mexico. Technol Soc 68:101837. https://doi.org/10.1016/j.techsoc.2021.101837
Reljic J, Evangelista R, Pianta M (2021). Digital technologies, employment, and skills. Industrial and Corporate Change dtab059. https://doi.org/10.1093/icc/dtab059
Sharma C, Mishra RK (2023) Imports, technology, and employment: Job creation or creative destruction. Manag Decis Econ 44(1):152–170. https://doi.org/10. 1002/mde.3671
Shen, Y., Zhang, X. The impact of artificial intelligence on employment: the role of virtual agglomeration. Humanit Soc Sci Commun, 11, 122 (2024). https://doi.org/10.1057/s41599-024-02647-9
Stiglitz, J.E. (2014), Unemployment And Innovation, Working Paper 24174. National Bureau Of Economic Research.
Sun W, Liu Y (2023) Research on the influence mechanism of artificial intelligence on labor market. East China Econ Manag 37(3):1–9. https://doi.org/10.19629/ j.cnki.34-1014/f.220706008
Tschang FT, Almirall E (2021) Artificial intelligence as augmenting automation: Implications for employment. Acad Manag Perspect 35(4):642–659. https:// doi.org/10.5465/amp.2019.0062
Yoon C (2023) Technology adoption and jobs: The effects of self-service kiosks in restaurants on labor outcomes. Technol Soc 74:102336. https://doi.org/10. 1016/j.techsoc.2023.102336
Zhou S, Chen B (2022) Robots and industrial employment: Based on the perspective of subtask model. Stat Decis 38(23):85–89. https://doi.org/10.13546/j. cnki.tjyjc.2022.23.016
Wang X, Zhu X, Wang Y (2022) The Impact of Robot Application on Manufacturing Employment. J Quant Technol Econ 39(4):88–106. https://doi.org/10. 13653/j.cnki.jqte.2022.04.002
Wang PX, Kim S, Kim M (2023) Robot anthropomorphism and job insecurity: The role of social comparison. J Bus Res 164:114003. https://doi.org/10.1016/j. jbusres.2023.114003
Publié-e
Comment citer
Numéro
Rubrique
Licence
(c) Tous droits réservés TERZI Chokri 2025

Cette œuvre est sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
Les auteurs qui publient dans cette revue acceptent les termes suivants :
- Les auteurs conservent le droit d'auteur et accordent à la revue le droit de première publication, l'ouvrage étant alors disponible simultanément, sous la licence Licence d’attribution Creative Commons permettant à d'autres de partager l'ouvrage tout en en reconnaissant la paternité et la publication initiale dans cette revue.
- Les auteurs peuvent conclure des ententes contractuelles additionnelles et séparées pour la diffusion non exclusive de la version imprimée de l'ouvrage par la revue (par ex., le dépôt institutionnel ou la publication dans un livre), accompagné d'une mention reconnaissant sa publication initiale dans cette revue.
- Les auteurs ont le droit et sont encouragés à publier leur ouvrage en ligne (par ex., dans un dépôt institutionnel ou sur le site Web d'une institution) avant et pendant le processus de soumission, car cela peut mener à des échanges fructueux ainsi qu'à un nombre plus important, plus rapidement, de références à l’ouvrage publié (Voir The Effect of Open Access).