Modeling the volatility of Bitcoin returns using Nonparametric GARCH models

Authors

  • Sami MESTIRI FSEG mahdia

DOI:

https://doi.org/10.59051/joaf.v13i1.489

Keywords:

Bitcoin, volatility, GARCH, Nonparametric, Forecasting

Abstract

Objective: The purpose of this paper is to demonstrate the effectiveness of the nonparametric GARCH model for the prediction of future Bitcoin prices.

 

Methodology: The parametric GARCH models to characterize the volatility of Bitcoin returns are widely used in the empirical literature. Alternatively, we consider a non-parametric approach to model and forecast the volatility of Bitcoin returns.

 

Results: We show that the volatility forecast of the nonparametric GARCH model yields superior performance compared to an extended class of parametric GARCH models.

 

Originality / relevance: The improved accuracy of forecasting the volatility of Bitcoin returns based on the nonparametric GARCH model suggests that this method offers an attractive and viable alternative to commonly used GARCH parametric models.

Downloads

Download data is not yet available.

References

Bollerslev, T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307-327

Bollerslev, T., Wooldridge, J., 1992. Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances. Econ. Rev. 11, 143-172.

Bollerslev, T., Engle, R.F., Nelson, D.B., 1994. ARCH models. In Engle, R.F., McFadden, D. (Eds.), Handbook of Econometrics, Amsterdam Elsevier Science, pp. 2959-3038.

Brandvold, M., Molnár, P., Vagstad, K., and Valstad, O. C. A. 2015. Price discovery on Bitcoin exchanges. Journal of International Financial Markets, Institutions and Money 36: 18- 35.

Bouoiyour, J., Selmi, R., Tiwari, A.K. and Olayeni, O.R. 2016. What drives Bitcoin price?. Economics Bulletin 36(2): 843-850.

Bossaerts P., HÃrdle W., Hafner C. (1996) Foreign Exchange Rates Have Surprising Volatility. In: Robinson P.M., Rosenblatt M. (eds) Athens Conference on Applied Probability and Time Series Analysis. Lecture Notes in Statistics, vol 115. Springer, New York, NY.

Bohlmann, P., McNeil, A., 2002. An algorithm for nonparametric GARCH modelling. Computational Statistics and Data Analysis 40, 665–683.

Engle R ,2001, Garch 101: The use of arch/garch models in applied econometrics. J Econ Perspect15: 157-168.

Engle, R.F., Bollerslev, T., 1986. Modelling the persistence of conditional variances. Econ. Rev. 5, 1-50.

Engle, R.F., Gonzalez-Rivera, G. 1991. Semiparametric ARCH models. Journal of Business and Economic Statistics, 9(4), 345-359.

Fan, J, Yao, Q. 1998, Efficient estimation of conditional variance functions in stochastic regression, Biometrika, Volume 85, Issue 3, Pages 645-660,

Ghalanos. A .2011, rgarch: A package for flexible garch modelling in r. Version 1.89.

Glosten, L.R., Jagannathan, R., Runkle, D.E., 1993. On the relation between the expected value and the volatility of the nominal excess return on stocks. J. Finance 48, 1779-1801.

Hardle, W., Chen, R. 1995. Nonparametric Time Series Analysis, a Selective Review with Examples. Proceedings of the 50th Session of the ISI.

HÃrdle, W., Lotkepohl, H., Chen, R. 1997.A Review of Nonparametric Time Series Analysis. International Statistical Review/Revue Internationale de Statistique, 65(1), 49-72.

Hou, A., Suardi, S., 2012. A Nonparametric GARCH Model Of Crude Oil Price Return Volatility. Energy Economics, 34(2), 618-626.

Nelson, D.B., 1991. Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59, 347-1313.

Pagan, A.R., Schwert, G.W., 1990. Alternative models for conditional stock volatility. J. Econ. 45, 267-290.

Tostheim, D., Auestad, B.H. 1994. Nonparametric Identification of Nonlinear Time Series: Projections. Journal of the American Statistical Association, 89(428), 1398-1409.

Tschernig, R., Yang, L. 2000. Nonparametric Lag Selection for Time Series. Journal of Time Series Analysis, 21(4), 457-487.

Wand, M., Ripley, B , 2007 . KernSmooth : Functions for kernel smoothing for Wand and Jones (1995). R package version 2.22-20.

Wang, L., Feng, C., Song, Q., Yang, L. 2012. Efficient Semiparametric GARCH Modeling Of Financial Volatility. Statistica Sinica, 22, 249-270.

Published

2022-06-30

How to Cite

MESTIRI, S. (2022). Modeling the volatility of Bitcoin returns using Nonparametric GARCH models . Journal of Academic Finance, 13(1), 2–16. https://doi.org/10.59051/joaf.v13i1.489